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ABSTRACT 

This research is concerned with the problem of optimal control of 

dynamic systems, where optimality here implies the minimization of some 

specified cost integral during the control process. In this study a 

practical computational procedure is developed for obtaining feedback 

control laws which are approximately optimal. 

The maximum principle of Pontryagin provides the theoretical basis 

for the proposed synthesis procedure. Application of the maximum prin- 

ciple in a given control problem yields an optimal control law which is 

a function of both the known system state vector and an associated un- 

known adjoint vector. At each point in state space this adjoint vector 

can be identified as the negative gradient of a certain scalar function 

of state, the optimal cost function, defined to be the minimal cost ob- 

tainable when that point serves as the initial condition for the dynamic 

process. Hence, knowledge of this optimal cost as a function of state 

?;orlc! be E C f f i C i O D - t  to el?ahle reslization nf nstimal C n n t r O l .  

The basic concept of the synthesis procedure described here is the 

functional approximation of the optimal cost and the use of this approxi- 

mation in place of an exact representation ts obtain a control law which 

is nearly optimal. This approximation is obtained by computing the opti- 

mal cost at a number of points along each of several individual optimal 

trajectories, tabulating these data, and then fitting a polynomial in the 

state variables to the stored data points by the method of least-squares. 

A near-optimal control synthesis is then achieved by implementing the 

control law obtained by application of the maximum principle, using an 

approximation of the adjoint vector obtained from the gradient of the 

polynomial representation of the optimal cost function. 

The computer time and memory requirements of this synthesis procedure 

are such that application of the method to systems of order up to four or 

five is feasible with current computers. The resulting control law is 

generally a simple function of the state variables and therefore readily 

implemented by an on-line controller of modest computing capacity. In 

addition, modification of the control law to insure stability is easily 

accomplished. 

Three computational examples illustrate the procedure and verify its 

applicability. ~~~~ 
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I .  INTRODUCTION 

A. OUTLINE OF THE PROBLEM 

As an illustration of the type of control problem to be treated in 

this investigation, consider the following example. In order to success- 

fully carry out an astronomical observation, an artificial satellite is 

required to maintain a fixed attitude in inertial space. However, the 

satellite is subjected to disturbance torques from such varied sources 

as micrometeor impacts, the motion of internal mechanical parts, and 

electromagnetic coupling with the earth's field. To counteract these 

torques the satellite is equipped with reaction wheels and gas jets for 

attitude control. After any momentary displacement caused by such dis- 

turbances the control system must return the satellite to the prescribed 
attitzde. R ~ r t h e r ,  it is required that each maneuver be performed in 

some optimal manner; for example, it may be required that a weighted 

sum of the integral squared attitude error and the amount of fuel con- 

sumed in the maneuver be minimized. The control signals to the actua- 

tors are to be generated by a small on-board digital computer, or con- 

troller. The question to be answered is this: What control law can 

be mechanized in the controller to provide optimal attitude control of 

the satellite? 

Generalizing from this specific example, consider a dynamic system 

described by the system of first-order ordinary differential equations 

where x is an n-dimensional vector of state variables and u is an 

r-dimensional control vector. The control - u is to be generated as a 

function of the state variables by an on-line controller according to 

some feedback control law - u = - -  c(x) (Fig. 1). What is sought is that 

particular control law which insures that the system will fulfill its 

prescribed mission from any arbitrary initial condition in a given 

- - 
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limit the computing capability of the controller, there are oEten de- 

finite advantages to be gained by reducing its size and complexity. 

Further, since the control signals are to be generated continuously as 

functions of the current state, the controller, if it is a digital 

device, must repetitively compute the control at intervals of very 

short duration in comparison with the dynamic response time of the 

system being controlled. Hence, for practical synthesis the sought- 

after control law should be of a form which requires neither extensive 

memory capacity nor long computational time for its realization by the 

on-line controller. These considerations are entirely qualitative, of 

course, and specific controller design constraints must originate with 

the particular application. 

The need for a second modification to the original problem is 

occasioned by the practical reality that even though it may be theoret- 

ically possible to obtain the optimal control law with great accuracy, 

it is almost never feasible to do so. In the first place, the computa- 

tional effort required invariably increases rapidly with the degree of 

accuracy sought, and the point is soon reached when the quest for fur- 

ther accuracy becomes economically unjustifiable. Secondly, the more 

nearly exact the representation of the optimal control law becomes, the 

more difficult is its realization by the controller, in general, since 

the requirement for simple on-line computability discussed in the pre- 

ceding paragraph cannot be met. Finally, for many systems, the sensi- 

tivity of the performance to changes in control is small in the vicinity 

of the optimal point, so that even a control law which rather crudely 

approximates the true optimal law can often yield near-optimal results. 

For these reasons, then, a computational procedure which yields merely 

an approximate synthesis of the optimal control will be quite satisfac- 

tory, provided only that the quality of the approximation is sufficiently 

good to effect a control which results in fulfillment of all mission 

requirements. Of course, the degree of approximation required for 

satisfactory control depends on the particular problem under consider- 

ation - the system, the cost function, the mission and required perform- 
ance specifications. Hence, a practical general synthesis procedure 
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is very slow and the on-line controller very large, and hence is appli- 

cable to only a small class of problems. Another extension of the 

methods for solving the optimal trajectory problem involves the genera- 

tion of several such solutions for initial points spaced around the 
boundary of the region of desired control, with some form of interpola- 

tion between these known optimal trajectories yielding the control as a 

function of the current state. This procedure, sometimes known as 

flooding", is described in some detail by Kipiniak [Ref. 121. Finally, t* 

there is Bellman's dynamic programming [Refs. 13, 141 which in essence 

comprises an efficient search process among all possibly optimal con- 

trols to find those which are, in fact, truly optimal. 

C. NEW RESULTS 

In these pages is described a new computational procedure for 

obtaining feedback control laws which are approximately optimal. This 

method is based primarily on the theoretical results of Pontryagin 

[Ref. 11. Application of Pontryagin's maximum principle in a given 

control problem yields an optimal synthesis in the form of a control 

law which is a function of both the known state vector and the unknown 

solution vector to the so-called adjoint system of differential equa- 

tions. This adjoint vector, considered as a function of state, can 

also be identified as the negative gradient of a certain scalar function, 

the optimal cost function, defined at each point 

incurred during the course of the dynamic process when starting in 

state x - and using optimal control. If this optimal cost function 

were a known function of state, therefore, a representation of the 

adjoint vector could be obtained by partial differentiation and the 

optimal control law thereby written as a function of the state variables 

alone, yielding a feedback synthesis of the desired form. 

x - to be the cost 

Unfortunately, the optimal cost function can be exactly determined 

by analytic methods for only a very few special classes of problems. 

It is possible, however, to compute a functional approximation of the 

optimal cost and to use this approximation in place of an exact rep- 

resentation to obtain a control law which is approximately optimal. 
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a type of  stability for this control problem is defined and it is shown 

h ~ w  the control law may be modified to assure stability of the con- 

trolled system. The computational feasibility of the proposed synthesis 

procedure i s  discussed in Chapter VII, and comparisons with other gen- 
eral methods for solution 

Extensions of the proposed procedure are also indicated. 
Chapter VI11 contains some computational examples which illustrate and 
verify the synthesis procedure. 

of the optimal control problem are drawn. 

Finally, 
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Let X be a bounded region of state space, the n-dimensional vector 

space of - x, within which a solution to the control problem is desired. 

Let T be a smooth q-dimensional manifold defined in X, where q<n-1. - 

The time of termination of the dynamic process defined by (2.11, tf, is 

to be determined as that time at which the state point 

T, and hence T is called the terminal manifold. If q = n-1, T is 

an (n-l)-dimensional hypersurface in X; if q = 1, T is a curve in 
X; if q = 0 ,  T is a point in X. 

x - first touches 

The class of admissible control functions u(t), t <t<tf, is taken 
0 -  - 

to be the class of arbitrary piecewise continuous functions ranging in 

a closed bounded set U of the r-dimensional space of the control 

variables. 

Let  f?(x,u) - -  be a non-negative loss function representing the rate 

of accumulation of cost, or penalty, during the course of the dynamic 

process. Thus .i? is the time derivative of the quantity to be mini- 
mized by the proper choice of control. 

discussed above, the possibility that f? is an explicit function of 

time is not excluded by this representation. 

A s  with the system function f 

The vector function - - -  f(x,u) and the function .i?(g,u) are assumed 
to be defined and continuous on 

with respect to 

X X U, and continuously differentiable 

x1 * sXn* 

B. STATEXENT OF THE PROBLJBI 

The optimal control problem may now be formulated. Given any 

initial point x(t ) = x and a terminal manifold T in X, among all 
admissible controls - -  u = u(t) which transfer the state point 5 from 

x to T, find one for which the cost integral 

0 -0 - 

-0 
tf 

takes on the least possible value. (The brackets around - u(t) indicate 

that J is a function of the entire time function z(t), t < t<tf; 
i.e., J is a functional.) Here - x(t) is the unique solution to (2.1) 

0-- - 
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A so lu t ion  t o  the problem as s t a t e d  cons i s t s  of f inding,  f o r  each 

p o i n t  x i n  X,  an associated cont ro l  funct ion - u ( t ) ,  such t h a t  the 

r e s u l t i n g  so lu t ion  curve, o r  t ra jec tory ,  of the  system (2.1) is optimal 

i n  the sense of minimizing the cost i n t e g r a l  (2.4). 

easily demonstrated property of optimal t r a j e c t o r i e s ,  however, is  t h a t  

every port ion of an optimal t r a j ec to ry  is  i t s e l f  optimal, a f a c t  o f ten  

r e fe r r ed  t o  as the  pr inc ip le  of opt imal i ty"  [Ref. 131. Therefore, i f  

the state point is  a t  x a t  any i n s t a n t  of t i m e ,  no matter along what 

t r a j e c t o r y  i t  ar r ived  there, the subsequent motion must be along the 

optimal t r a j e c t o r y  emanating from x . Hence, the value of t h e  optimal 

cont ro l  u a t  the in s t an t  the state point passes through x depends 

on x alone. Therefore, ra ther  than f i n d  the t o t a l i t y  of cont ro l  

funct ions u ( t )  corresponding to a l l  possible choices of x i n  X, 

i t  s u f f i c e s  t o  f ind  the s ing le  optimal cont ro l  function 

where x ranges over X. This r e s u l t  formulates t h e  so lu t ion  t o  the  

optimal cont ro l  problem a s  a feedback cont ro l  scheme. To the extent  

t h a t  the function u = c (x) can be synthesized, optimal cont ro l  of 

the system can be rea l ized .  

* 

A well  known and 

?? 

Q 

-0 

-0 - 

-0 

-0 - * 
- -  u = c (51, 

- 

* 
- - -  

A f i n a l  assumption is  that the system can be observed, i n  the sense 

t h a t  a t  each i n s t a n t  t ,  t i t < t  the  state vector  x - can be either 

measured d i r e c t l y  o r  computed unambiguously from measurements of related 

system quan t i t i e s .  

0 -  - f '  
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ad jo in t  system of d i f f e r e n t i a l  equations: 

T T 
h = - f (E,”) + a , x  - - -’X - 

Let  - u*(t) ,  to < - -  t < tf ,  be an admissible 

(x,u) . (3.2) 

cont ro l  such t h a t  the corre-  

sponding t r a j ec to ry  x ( t )  beginning a t  x a t  t i m e  to arrives a t  

t h e  terminal manifold T at some t i m e  tf. I n  order  t h a t  - u*(t)  and 

- x ( t )  

- X ( t )  
funct ion H(x(t) ,  - - h ( t ) ,  u ( t )  ) considered as a function of the  var iab le  

u E U a t t a i n s  i ts  maximum a t  the point  

value equals zero a t  every time t along the  t r a j ec to ry :  

-0 

be optimal, there must e x i s t  a non-zero continuous vector  funct ion 

s a t i s f y i n g  (3.2) such t h a t  f o r  any t ,  to -< t 5 t f s  the Hamiltonian 

* u = u ( t ) ,  and t h a t  maximum - - -  

The maximum pr inc ip l e  s t a t e s  that  w i t h  each state point  x - i n  X is  

associated an adjo in t  vector  

passing through - x. I n  the  optimal system, then, - h can be considered 

t o  be a vector  function of the  state var iab les .  

- X corresponding t o  t h e  optimal t r a j e c t o r y  

An addi t iona l  necessary condition which must be s a t i s f i e d  a t  the  

terminus of every optimal t ra jec tory  is  the  t r ansve r sa l i t y  condition. 

Consider a t r a j e c t o r y  x ( t )  which a r r i v e s  a t  the  terminal manifold T 

a t  the point x a t  time t f .  The q-dimensional hyperplane tangent t o  

T a t  the  point x is designated the  tangent plane t o  T a t  x 

Then a necessary condition that  x ( t )  - 
t he  vector  function - X(t) corresponding t o  - x ( t ) ,  whose exis tence is  

assured by the  maximum pr inc ip le ,  is  orthogonal t o  the  tangent plane t o  

- 
-f 

-f -f 
be an optimal t r a j ec to ry  is  t h a t  

T a t  the  point zf, a t  t h e  f i n a l  t i m e  t = tf.  

A c lose  r e l a t ionsh ip  e x i s t s  between the  provisions of the maximum 

pr inc ip l e  and the  c l a s s i c a l  r e s u l t s  of the  ca lcu lus  of va r i a t ions .  The 

s y s t e m  of 2n f i r s t -o rde r  d i f f e r e n t i a l  equations (2.1) and (3.2) is  

equivalent t o  a system of n second-order Euler-Lagrange equations,  

while the  maximum pr inc ip l e  i t s e l f  corresponds t o  t h e  Weierstrass 

-13- 



Proofs of t h i s  r e s u l t  based on var ia t iona l  arguments have been given by 

Breakwell [Ref. 31 and by Berkovitz [Ref. 161. A s implif ied der ivat ion 

which a l so  illustrates the  geometry of the optimal cont ro l  problem is 

presented here. 

Consider the hypersurface I(x)  = 11, where I1 is  a pos i t ive  con- - 
s t a n t  (Fig. 21, and denote t h i s  hypersurface T1. This hypersurface 

cons i s t s  of a l l  the points  x f rom which it  is  possible t o  a t t a i n  the  

terminal manifold T with a cost  of 11, using optimal control .  L e t  

x - (t) be the pa r t i cu la r  optimal trajectory emanating from an i n i t i a l  

point  x lying outside" T1, so t h a t  I(%) > 11, and l e t  x be 
-0 -1 

t h e  point of in te rsec t ion  of 

Now the segment of x*(t)  connecting x and zl i s  a l so  the 

so lu t ion  curve f o r  a d i f f e ren t  optimal cont ro l  problem, t h a t  of a t t a in ing  

the  hypersurface T, from the point x with minimal cos t ;  f o r  i f  

some other  t r a j ec to ry  t ransferred the point x t o  T1 w i t h  less cost 

than - x*(t) ,  then s ince T can be a t ta ined  from any point on T1 with 

an optimal cos t  of 11, the t o t a l  cos t  from x t o  T could be made 

less than tha t  obtained along t h e  t r a j ec to ry  x*(t) ,  y ie lding a contra- 

- 

* 
w 

x*(t)  with T1. - 
-0 - 

I --c? 

-0 

I) 

- 
dic t ion .  Applying 

problem, f o r  which 

ad jo in t  vector - X 
m u s t  be normal to  

T s ince  X f = R 2 0 - -  

the  t ransversa l i ty  condition to t h i s  newly posed 

T1 now cons t i tu tes  the  terminal manifold, the 
* corresponding t o  (t) a t  t he  terminal point x 

T1 a t  x and is  d i rec ted  inwards" towards T, 

a t  each p o i n t  on any optimal t ra jec tory .  On the 

-1 
l? 

-1 ' 

at  the  point x is  normal t o  -1 
*I  

I ,X other  hand, the  gradient vector 

the  hypersurface T1 a t  x and is di rec ted  outwards", i n  the direc-  

t i o n  of increasing I(5). Hence, a t  the  point z1, 
-1 

T - X = -KI,x , - 

where K is  some pos i t ive  constant. 

To evaluate K,  recall from the maximum pr inc ip le  t h a t  

(3.6) 

(3.7) 
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at the point x on the optimal trajectory x*(t). Now I f evaluated 

at x is just at x along - x*(t). On the other handy 
-1 - 'X- 

-1 -1 
tf 

I(zl) = [,l(x,b,dt, - 

* tl is the time at which x = x along x (t), and differentia- - where 

tion yields 
- -1 

Hence, (3.7) can be rewritten 

1 = -KI(x-) + I(x,) = 0, --*-1 -1 -I 

and thus K = 1. 

The above argument can be repeated for all points on the hypersur- 

k face I(5) = 11, and again for all other hypersurfaces I(x) - = I 

where Ik is an arbitrary positive constant. Hence, the desired 

result (3.5) holds throughout X. 

If the optimal cost function has only piecewise continuous first 
partial derivatives, the above arguments do not hold at points of dis- 

continuity of these derivatives, since the gradient vector 

defined at such points. 

in X. In the sequel, where the result (3.5) is used, a tacit reserva- 

tion to points of continuity of 

is not I'X 
In such a case, (3.5) holds almost ev&where 

will be understood. I ,x 
For any given problem the question of the satisfaction of the three 

initial assumptions arises. Unfortunately, the validity of the first 

two of these presuppositions is not subject to direct analytic test. 

Generally speaking, one's understanding of the nature of the particular 

problem under consideration will provide conviction of the correctness 

or incorrectness of these assumptions. The third assumption may often 

be established by investigation of the function 

of the control - u 
a(x,u), - -  where the form 

is provided by application of the maximum principle. 
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Hence, if the optimal cost function I(x) - were known throughout X, 

the gradient vector I ,x  could be written as a function of E ,  and the 
sought-after optimal coztrol law - c*@) thereby obtained. 
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As a practical matter, however, non-optimal extremal trajectories 

may be feasibly distinguished simply by comparison. Thus, if the 

optimal solution is known to be a finite-time solution, i.e., if the 

state point arrives at the terminal manifold T at some finite time 

along any optimal trajectory, then if through every point in state 

space only one extremal trajectory passes, that extremal is, of neces- 

sity, optimal. If, however, through some set of state points more than 

one extremal trajectory passes, the true optimal trajectories can be 

distinguished from non-optimal ones by comparing the optimal cost func- 

tions along the separate contending trajectories at each such point. 

On the other hand, it may not be known whether or not the optimal 

solutions arrive at the terminal manifold in finite time. For many 

problems, of course, such infinite-time solutions are clearly ruled out 

8 priori, as in the time-optimal problem and problems where the final 

time is actually prescribed as a terminal condition. For some other 

problems - the linear system with a quadratic cost function, for 
example - the optimal trajectories are known to be infinite-time solu- 
tions [Ref. 191. Clearly, such infinite-time solutions cannot be 

generated by any computational process such as those to be discussed 

below. However, such solutions may be approximated by solving the 

given problem with a specified final time chosen to be sufficiently 

large. Extrema1 solutions for the fixed-time problem may then be com- 

pared with any finite-time extremals of the original problem to deter- 

mine those trajectories which are, in fact, truly optimal. 

The generation of finite-time extremal trajectories will now be 

considered, assuming that the above-described methods can be used to 

distinguish among these trajectories those which are actually optimal. 

Ie general, two distinct methods exist for generating extremal 
trajectories, both involving enforcement of the necessary conditions 

for optimality in the solution of the system equations. In the first 

method, which will not be discussed in any detail here, sequences of 

trajectories are generated from given initial conditions by forward 

integration of the system equations, with some technique for successive 

improvement ensuring that each trajectory in the sequence more closely 
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equations can thus be written: 

The generalization to nonlinear systems, multidimensional control, and 
more complex control constraints will be obvious and straightforward. 

1. The time-bptimal problem; q = 0. 

Here the terminal manifold is taken to be a point - in parti- 
cular, the origin. For this problem L? = 1 and the Hamiltonian func- 

tion is 

T 
H = X (F x + d U) - 1. - - -  

Maximization of H with respect to u E U yields the optimal controi 

law, 

* T u = sgn ?bg, 

11 where sgn" represents the signum function, defined by sgn f f/l f I .  
The adjoint differential equations (3.2) are 

f' Since H = 0 everywhere on an extremal trajectory, H = 0 at t = t 

in particular, where x(tf) = - 0, and there results 

Since q = 0 there are no transversality requirements for this problem. 
The extremal trajectories for this problem can be generated as 

solutions to the an-system of differential equations: 

-23- 



where K is given by (4.3). There exists an (n-1)-parameter family of 

solutions to the system (4.41, corresponding to the n-1 arbitrary choices 

of components of rr,, subject to the constraint a x = 0. Each of 

these solutions is an extrema1 for this problem. 

T 
- -f 

3. Quadratic cost with fixed final time; q = 0. 
T 2 Here, h' = 5 C@ + y u , where Q is a positive definite sym- 

tf metric matrix and y is a non-negative constant. The final time 

is fixed. In order to properly represent the terminal manifold for this 

problem, an additional dynamic state is introduced, defined by the dif- 

ferential equation 

&= 1 , x n+l (tf) = tf' 

The terminal manifold in the (n+l)-dimensional state space is the poiiit 

( 0 ,  ..., O,tf). 
For this system, 

where At 
variable. Application of the m a x i m u m  principle yields the optimal con- 

trol law: 

is the adjoint variable corresponding to the (n+l)th state 

XTd u * =sat (F) , 
n where sat" represents the saturation function, defined by 

f , if < 1 , 

, if If1 > 1 . - sgn f 

sat f E 

The adjoint equations (3.2) are 
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The preceding examples have demonstrated the backwards generation 

of extremal trajectories as members of an (n-1)-parameter family of 

reversed-time solutions to a Zn set of first-order differential equa- 

tions, the unknown parameters being components of the final state and 

adjoint vectors at the terminal manifold, in general. The disadvantage 

of this method is the difficulty in obtaining a set of values for these 

parameters which will insure that the distribution of the resulting 

extremals is reasonably uniform throughout X. Such a distribution is 

desirable since the overall accuracy of the data fitting procedure which 

follows depends on the uniformity of distribution of the data points. 

For some problems the physical significance of the components of the 

adjoint vector as sensitivities of the optimal cost function to changes 

in state may provide information of assistance in the appropriate selec- 

tizn e€ these prrrmeter values. In general, however, several trial 

extremals must be generated from arbitrarily selected parameter values 

in order to find a set of values resulting in a suitable distribution 

of trajectories. However, since only a reasonable uniformity of spacing 

of trajectories is required, the evaluation of useful parameter values 

is not too critical a process, and the computation time needed for this 

preliminary exploration is generally only a fraction of that required 
for the synthesis procedure proper. 

E. FUNCTIONAL APPROXIMATION OF THE OPTIMAL COST 

After generating a suitable set of extremal trajectories by either 

the backward integration method described above or by some successive 

improvement technique, and after detecting and eliminating from con- 

sideration any extremal trajectories which are non-optimal, as discussed 

earlier, a functional approximation of the optimal cost function may be 

obtained in the following manner. First, the optimal cost I is tabu- 

lated as a function of the state variables 

ments of cost along each of the optimal trajectories. When these tra- 

jectories are obtained by backward integration, this tabulation is 

easily performed by integrating the function ,8(x,$) along with the 

equations of motion from the initial condition 

xl, ..., x at regular incre- n 

I = 0 on the terminal 
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for i,j, ..., k = 0, l,...,m, Introducing the definitions 

for notational convenience, (4.8) can be rewritten as 

? T ... 
L L  

a=o @=O -0 

i=O,. . . ,m 
j=O, . . . ,m 

(4.9) S = T  @... Y Qtti,@+j, ...,y+ k ij ... k’ : 
k=O, ..., m. 

n Equation (4.9) represents a system of (m + 1) simultaneous linear 
n equations in the (m + 1) unknown coefficients a 

a,p ,..., y = 0 ,  1 ,..., m. 
[Ref. 201 that the matrix of elements S is non-singular, 

guaranteeing a unique solution of (4.9) for the coefficients a 

@... r ’ 
Assuming that N > (m + 1In, it can be shown 

a+i,B+j,. . . ,r+k 

- 

cup.. .y 
and thereby assuring a minimum for u. Hence, solution of (4.9) by a 

suitably convenient computational method yields the coefficients of the 

approximation (4.7). 

In calculating the elements of the S matrix and - T vector, it 
will often be necessary to scale the state variables in order to avoid 

overflow or underflow conditions on the computer. A method for accom- 

plishing this scaling is described in Appendix A. 

When the order n of the dynamic system and the degree m of the 

approximating polynomial attain moderate size, the dimensionality of the 

system (4.9) becomes quite large. For example, with a fourth-order 

dybamic system and a fourth-degree approximation of I(x), - n = 4 and 

m = 4, and therefore there are 54 = 625 simultaneous least-squares 

equations to solve. Thus the magnitude of the computing task increases 

quite rapidly as n and m increase. It is noted, however, that in 
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is sought, where pi(x) is a polynomial of degree i, and where the 

coefficients a are again to be determined by the least-squares 

criterion. Following the reasoning which led to (4.9) above, there 

results an analogous system of linear equations, 

ij...k 

S f t...F a @... Y Wi,B+j ,,,., y+k 
a=op=o P O  

i=O,. . . ,m 
j = O , .  . . ,m 
k=O,. . . ,m, 

(4.12) 

where the elements of the T vector and the S matrix are given by - 

If the polynomials pi(x) 

some mass distribution w(x) over some range (a,b), i.e., if 

are chosen to be orthogonal with respect to 

b 
r 

then the off-diagonal elements of the S matrix, those elements for 

which a # i, @ f j,...,r # k, will generally be small in comparison 
with the diagonal terms. If the S matrix is so structured, with the 

diagonal elements dominating the off-diagonal ones in magnitude, then 

the accurate solution of the system (4.12) for the coefficients a ij.. .k 
is greatly facilitated, and approximations of relatively high degree 

can be obtained. As with the power series approximation, a considerable 

reduction in the dimensionality of the system (4.12) can be effected by 

fitting the reduced polynomial (4.111, with terms for which (i+j+ ...+ k)>m 

eliminated. 
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a separate  polynomial i n  each region of state space i n  which 

smooth. The con t ro l l e r  would then have to contain log ic  t o  determine 

i n  which region of s t a t e  space the current  s t a t e  i s  located, and t o  

switch between appropriate sets of approximation coe f f i c i en t s  whenever 

t h e  state point crosses from one region to another. 

I(x) - is  

S imi l a r  piecewise approximations might provide an a t t r a c t i v e  alter- 

na t ive  when I(x) is of such a nature  t h a t  no approximating polynomial 

of conveniently low degree can be f i t t e d  w i t h  s u f f i c i e n t  accuracy 

throughout the whole of X. Then su i t ab le  low order f i t s  could be made 

- 

l oca l ly  i n  each of several  subregions of X, and appropriate switching 

logic incorporated i n t o  the cont ro l le r  design. 
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where K is a positive scale factor, suitably chosen. A method for 
determining the value of K which has proven successful in yielding a 

reasonably accurate estimate of h will be described. - 
Define the pseudo-Hamiltonian function, 

(5.3) 

At each point x, - H differs from the Hamiltonian function H associated 

with the truly optimal solution in that (1) X 

to 

knowledge of - A. The functional form of - u is prescribed by applicatim 

of the maximum principle, with the approximation - X replacing - A ,  

Eq. (5.1). Now let K be chosen in accordance with another of the 

optimality conditions embodied in the m a x i i i i - m  principle, namely the 

requirement that H vanish along the trajectory. Thus, at each point 

XI 

A 
is only an approximation - 

X, and (2) - u is the non-optimal control resulting from inexact - 

A 

A 

(5.4) 

where - u is given by Eq. (5.1). This choice of K makes the pseudo- 

Hamiltonian a constant of the motion of the system, just as the true 

Hamiltonian is a constant of the optimal motion of the system. Of 

course, the third necessary condition for optimality, the requirement 

that - X satisfy the adjoint differential equation (3.21, is not ful- 

filled, in general. Nevertheless, computational results indicate that 

the representation - X of Eq. (5.2) with K given by (5.4) is a satis- 

factory approximation of - X for the purpose of control, the control 

law being given by (5.1). 

A 

4 

B. EXAMPLES 

To illustrate the control law calculation discussed above, two 

examples will be considered. In each case the approximate optimal con- 

trol (5.1) will be found as a function of the state - x and the computed 
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1 . 2  
A T (I ,&I h 

K2 - I ,  1 K - 5 = 0. 
n+l 

- 
X 4Y - 

Solving f o r  K ,  

where the  pos i t ive  s ign before the r a d i c a l  w a s  chosen t o  s a t i s f y  K >  0. 

The cont ro l  l a w  is thus given by 

I m I 

A 3 xQz I _  211 / c ; c \  

1 I' '"*"' 
'x- ( I , x F ~  + .I, )'+ - 

Y - X - 
n+l - 

A 

u = sat {-A+ I ,  d [T, - x -  Fx + I, X n+l 
X- - 

- A 
For the  case where the f i n a l  t i m e  is  not prescr ibed,  I ,  = 0,  

X n+l and the cont ro l  is  otherwise iden t i ca l  t o  (5.6). 

C. REALIZATION OF THE CONTROL LAW 

The s t r u c t u r e  of the  con t ro l l e r  i s  d i c t a t ed  by the  pa r t i cu la r  

na ture  of the system being control led and the cost function being 

minimized. The con t ro l l e r  performs t w o  s p e c i f i c  computational func- 

t ions : 

1. I t  computes ;he gradient of the approximate optimal cos t  
polynomial I (x) ,  or a t  least those components of t h e  gradient  
vector  which are required i n  the determination of the con t ro l  
function. Each component is i t s e l f  a polynomial i n  the state 
var iab les ,  and may e i t h e r  be cozputed d i r e c t l y  from the coef- 
f i c i e n t s  of the  approximation I (x )  or from the  derived coef- 
f i c i e n t s  of i t s  own Expansion. For example, the  f i r s t  compo- 
nent of the  vec tor  
nomi a1 

may be computed either as t h e  poly- I *X - 
m m  m 

i-1 j k A 

n '  X x2.. .x I,x = 1 1 ...I i a i j . . . k  1 
i=l j=O k=O 1 

( 5 . 7 )  
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VI. STABILITY 

In the preceding 

which, when combined 

chapter a control law u = c(x) was obtained 

with the system equations (2.11, yields the equa- 
- - -  

tions of motion for the controlled system: 

In the development of this control law, no provision for insuring the 

stability of the resulting system has been made, where stability is 

here meant in the sense that all trajectories tend to the terminal 

manifold T as time increases. Of course, if T is a hypersurface 

in X, stable control is easily achieved, since it is only necessary 
L U ~ L  LU~S statz p i n t  interscct thzt  hypersurface. However; for T of 

smaller dimension than n-1, the control law (5.11, even though approx- 

imately optimal, may generate trajectories which neither intersect T 

nor approach it asymptotically. 

L. - -L  LL- 

This problem is considered in the present chapter. First, the type 

of stability of interest here is defined precisely and sufficient con- 

ditions for guaranteeing stability are established. Then means of 

modifying the control in order to stabilize the system are discussed. 

A. "STABILITY" 

The subject of stability of a system of differential equations 

refers to the behavior of any solution curve with respect to a nearby 
known solution. By suitable substitution and transformation of coordi- 

nates the problem of stability is reducible to the question of behavior 

of the autonomous system 

relative to the trivial solution, x = 0 - the origin. Stability with 

respect to the origin is defined as follows [Ref. 221: The origin is 
- -  
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71 considerable value i n  the  study of 

being considered here. Let  V(x) - be a continuous d i f f e r e n t i a b l e  func- 

t i o n  defined i n  a region M such t h a t  t(x) - along any trajectory i n  

M is negat ive,  or possibly zero a t  a countable number of po in ts  which 

are not equilibrium poin ts  of the system. Consider a hypersurface 

V = V1 i n  M. I t  is  clear tha t  a trajectory s t a r t i n g  a t  any x i n  

M f o r  which V ( s )  > V 1  w i l l  eventually either i n t e r s e c t  t he  hyper- 

sur face  V = V1 or w i l l  cross the boundary of M. 

s t a b i l i t y "  f o r  t he  con t ro l  problem 

-0 

J 

Further ,  i f  the boundary of M is  i n  f a c t  the hypersurface V = V 

where V > V1, then the t r a j ec to ry  s t a r t i n g  a t  any point  x f o r  

which V > V ( s )  >V1  cannot c ross  that boundary and therefore  must 

eventual ly  i n t e r s e c t  the hypersurface 

0 

0 -0 

0 

V = V1. 

I1 These ideas  may be employed t o  e s t a b l i s h  a 

gous to the familiar Lyapunov theorems on s t a b i l i t y .  

s t a b i l i t y "  theorem analo- 
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from below in N (V(x) > K > 0, 5 E N ) .  

bounded, and thus V is bounded from above in T Therefore, there 

exists some 6 > 0 small enough that V(z2) > V(E~) for all x1 in 

T and all z2 in N .  

Further, T 

6' 

is closed and 6 - 

6 

6 -  Let x(t) be a trajectory which at some time tl is in T - 
Suppose at some later time t2 > t that - x(t2) is in N. This 

implies that V(x(t2)) > V(x(t ) )  which is a contradiction, since 

Thus, if - x(t) ever enters Ts it never thereafter leaves TE, and 
quasistability of T is established. 

1 
i S 0 .  - 1  - 

Suppose x(t) neither crosses the boundary of M nor intersects 

T. Now V(x) - is continuous, bounded, positive and monotonic decreas- 

ing. Hence lim V(x(t)) = V > 0 exists. Suppose Vf > 0. Then 

outside some region 

closure of M-T and since this r-egioil is bo-aded, -V has a positive 

minimum there, so that -V cannot in fact approach zero there. Thus 

Vf = 0, which implies that lim d(x(t)) - = 0. Hence x(t) is asymp- 

totically quasistable. 

f -  - 
t + m  -; must tend to zero. But -+ > 0 in the Tr 2 

r' 

t + =  

This establishes the theorem. 

B. STABILIZATION OF THE CONTROUD SYSTEM 
11 It is desired that the controlled system (6.1) be stable". The 

theorem of the preceding section prescribes sufficient conditions for 

stability"; hence its provisions may be employed to provide require- I1 

I? ments whose satisfaction will ensure stability" of the system. Speci- 

fically, a function V(x) - 

theorem are fulfilled. 

is sought for which the conditions of the 

As a source of inspiration for a choice of V(x) consider the 

optimal system. Of course this system is stable", by definition, 

since every optimal trajectory necessarily attains the terminal manifold. 

Beyond this observation, however, it is easily seen that the optimal 

cost function I(x) - satisfies the requirements of the stability" 

theorem. First, I(x) - = 0 on T and is positive everywhere else in 

X. Then along any optimal trajectory, by virtue of the relations 

- 
91 

I? 
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interest here are those which originate in X, such a choice of M 

permits the possibility of trajectories leaving M to be ignored. 

Hence, satisfaction of the two conditions on 

in fact, assure stability". 

A 

I(x) - stated above will, 
91  

A 

In general, the approximation I(x), - resulting as it does from 

fitting a polynomial to data points distributed throughout X, will 
not satisfy these two conditions. It might be possible to force these 

properties upon I(z) by applying these conditions as constraints on 

the fitting process; however, the quality of the overall fit would 

thereby necessarily be reduced and the system performance correspondingly 

degraded. Fortunately, satisfaction of these conditions on I(5) 
throughout X will not generally be required for system stability". 

Since the control law (5.1) is nearly optimal, it can be assumed that 

211 cnntrrlrlled trajectories will in fact arrive in the vicinity of T, 
and that therefore stabilization is required only in some neighborhood 

of T. This assumption is based on the observation that I is negative 

along every controlled trajectory, and since 

good approximation to I(x), - its value is near zero in the vicinity of 

T and increases with increasing distance from T. Further, the value 

of the loss function J(x,u) is generally small near T, so that the 

contribution of the terminal phase of the trajectory to the total cost 

is relatively insignificant. These considerations suggest the follow- 

ing control policy: the approximation I(x) - resulting from the fitting 

procedure described in Chapter IV is to be used throughout X except 

in a suitably chosen neighborhood of T, where an approximation satisfy- 
ing the two 

Such a mode of operation will insure system 

only an insignificant cost penalty. 

A 

A 

rv 

h 

A 

I(x) - is a reasonably 

A 

?9 stability" conditions stated above is to be substituted. 
*I stability" while incurring 

A 
What sort of an approximation I(x) - should be used near T for 

the purpose of stabilization? Any representation satisfying the two 
r i  

priately determined positive definite quadratic form possesses the 

virtues of simplicity and ease of implementation. The development of 

such an approximation will therefore be considered in more detail. 

stability" conditions would be satisfactory, of course, but an appro- 
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controller, is given by 

f arbit In the most general case T is a manifold ary dimension. 

Define y(x) to be some convenient continuously differentiable vector 

function of x - defined in X satisfying the condition that IIy(x)ll - -  = 0 

if and only if xeT. - Thus IlyJI is a generalized measure of the dis- 

tance of T from x .  In the vicinity of T let I = y Qy, where 

again Q is positive definite to satisfy the stability" conditions. 

Q can be determined by one of the methods described above. The gradient 

of the approximation is 

- -  

A T  
e - -  

I 1  

for use in the computation of the control law (5.1). 

The preceding paragraphs have described procedures for obtaining an 
I t  A 

approximation I(x) - to guarantee stability?' in the vicinity of T. 

There remains the question of implementation of the transfer from the 

original approximation I (x) - to the stabilizing" approximation. In 

general the stabilizing" approximation should be employed whenever the 

state point lies within a certain neighborhood of T, the boundaries of 

this region to be determined for the particular problem at hand on the 
basis of simulation results or experimentation. The mechanization of 

this switching may be performed in either of two ways. 

I I  

I t  

1. The boundary hypersurface of the two regimes can be stored 
within the controller. One approximation is used when the 
state point lies on one side of this hypersurface, and the 
other used in the opposite case. This method will not be 
feasible if this switching boundary is highly convoluted. 

A 

2. The original approximation I(x) can be continuously com- 
puted by the on-line controller and the switch to thz 
bilizing" approximation made whenever the value of 
falls below a prescribed level. 

I? sta- 
I(x) 
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systems is completely automatic in its operation, and the efficacy of 

any particular procedure depends in part on the experience, skill and 

predilections of the person who is employing it. 

For these reasons no direct comparative evaluation of various 

general synthesis techniques will be attempted. Instead, some observa- 

tions will be made on those characteristics of the method proposed here 

which relate to its feasibility for practical application, character- 

istics such as required computational effort, accuracy, facility of 

control law mechanization, stability of control and system flexibility. 

Lacking definite knowledge about which general synthesis procedure is 

best for the particular application at hand, these are the factors which 

must be evaluated and weighed in order to come to a decision on which 

technique to employ. 

Additionally in this chapter are discussed two extensions of the 

general synthesis procedure useful with certain classes of problems. 

A. EVALUATION OF TIB SYNTHESIS PROCEDURE 

1. Comwtational Effort 

As described in Chapter IV the proposed synthesis procedure 
requires an extensive amount of numerical calculation. This computation 

consists of the generation of a suitably large set of individual optimal 

trajectories, the evaluation and storage of the optimal cost function at 

several points along each of these trajectories, and finally the approxi- 

mation of this function by a polynomial of appropriate degree in the n 

state variables by the method of least-squares fitting of the stored 

data points. Naturally these calculations are to be performed by a 

high-speed digital computer. In order that such a procedure be feasible, 

however, it must require neither an extensive amount of high speed 

memory, which is directly limited by current computer technology, nor 

excessive computation time, which is constrained less directly by eco- 

nomic considerations. In this section approximate computer time and 

storage requirements of the proposed synthesis method are indicated; 

primarily, these requirements are functions of the order n of the 

system and the degree m of the approximating polynomial. 
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if the reduced fit of degree m is made. 

On the basis of this second storage requirement then, for which 

low-speed storage cannot so readily be substituted without materially 

increasing computation time, the use of the reduced fit of moderate 

degree 

dated. 

(m = 4 or 5 )  would permit systems of like order to be accommo- 

In order to make a rough estimate of the computation time required 

by this method, the procedure will be considered in three phases: 

(1) computation of optimal trajectories, assumed to be performed by the 

zeth~c!  ~f hac-hards integration: (2) calculation of the coefficients of 

the system of least-squares equations; (3) solution of the least-squares 

matrix equation. 

Let 4 be the average length of time required to numerically inte- 

grate a single differential equation backwards from the terminal mani- 

fold to the boundary of X. The magnitude of 4 is determined pri- 
marily by the extent of the region X and the accuracy required of the 

integration procedure, which controls the integration step-size. Then 

the integration of each optimal trajectory will require an interval of 
n-1 length 2 9 ,  on the average. Since 7 such trajectories must be 

computed, the computation time for phase (1) is given by 

Phase (2) requires the calculation of the coefficients of a system 

of L simultaneous linear algebraic equations, specifically the elements 

of the S and T matrices of (4.9). Since the matrix S is sym- 

metric, &L(Lt-3) 

summation over the N observations, where N is given by (7.1). Each 

term of these summations is of the form x1 x2. ..xk or I(xl,. ..,x 

x1 X2°'*Xn.' 

such elements must be computed, each of which is a 

i j  
n n 

i j  For simplicity, assume the average time to compute each 
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uniform density of optimal trajectories in the synthesis procedure pro- 

per. The time used in generating these prefatory trajectories must also 

be included when figuring overall computer time requirements. 

On the basis of the time estimates developed above it again appears 

that by using reduced fits of moderate degree, systems of equally 

moderate dimensionality (m,n up to four or five) may feasibly be treated 

by the proposed synthesis procedure in reasonable computation times. 

2. Accuracy 

At only one point in the synthesis procedure is approximation 

substituted for exact solution, and that, of course, is the approxima- 

tion of the optimal cost function. Thus, if the polynomial I(x) - were 

an exact representation of I(x), the procedure would yield the true 

optimal control law. It may be concluded, then, that except for the 

small effects of computational errors such as roundoff and truncation 

which are inherent in any computer application, the inaccuracy of this 

functional approximation must be the sole cause of any discrepancies 

between the computed control law and the true optimal control. For 

this reason a consideration of the accuracy of the approximation 

A 

A I(z) 
. will yield information about the accuracy of the resulting control law. 

A 

The question of accuracy of I(x) - 
the requirements on computer time and storage, as is evidenced by the 

repeated occurrence of the index m, the degree of the approximating 

polynomial, in the computer memory and time estimates of the preceding 

section. Given a computer of sufficient capacity and speed a very 

accurate representation of I(x) - 
ficiently many data points and using an approximating polynomial of 

sufficiently high degree. In reality, however, computing capacity and 

time are limited, and rather severely so, as was indicated in the pre- 
vious discussion. Hence, an appropriate question is: How accurately 

can I(x) - 

is inextricably bound up with 

could be obtained by generating suf- 

be represented by a polynomial of low or moderate degree? 

No definite answer to this question can be expected, of course, 

since the response must vary with the nature of the particular problem 

being considered. Some remarks on the characteristics of the function 
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function. 

in sign and magnitude throughout X, and the components of c* may 

possibly even be piecewise discontinuous. Therefore, these functions 

will not generally be susceptible to approximation by polynomials of 

moderate degree with an accuracy comparable to that attainable in 

approximating the optimal cost, I(x). 
approximation is required for I(x), - in estimating - X up to n scalar 

approximations must be made, and representation of - -  c*(x) requires r 

such approximations. 

In fact, these components can be expected to vary considerably 

Furthermore, whereas only one 

There exists another facet of the proposed method which influences 

the quality of the control. It would be convenient if the accuracy of 

the approximation I(x) - were highest in those regions of X where the 

sensitivity of the optimal cost to changes in state is greatest, and 

where, thsrsfore, deviations of the synthesized control from the true 

optimal control are most costly. No such regulation of the accuracy of 

approximation is operative in other synthesis methods. In the procedure 

proposed here, however, where data are stored at regular increments of 

cost along optimal trajectories, the density of tabulated points in 

state space is greatest in those regions where the cost changes most 

rapidly, i.e., where the sensitivity of the optimal cost is greatest. 

Then in the least-squares fitting procedure, there occurs a natural 

weighting of the fit in such regions because of the higher density of 

data points there. This results in a higher accuracy of approximation 

in just those regions where increased accuracy in the determination of 

the control law is most important. Unfortunately, no quantitative 

evaluation of this effect appears feasible. 

A 

The conclusion reached from the above discussion is that the nature 

of I (x )  is generally such that it can be adequately represented by a 

polynomial of reasonably low degree, while such other functions as 

h(x) and - -  c*(x) cannot be similarly approximated with sufficient 

accuracy. Since the limitations of computer time and space considered 

in the preceding section dictate such an economy of approximation, the 

proposed procedure would appear to possess definite practical advantages 

over methods requiring such alternative approximations, particularly in 

- -  
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quantization level is high, for accuracy of control, the controller 

storage requirement becomes excessive. A low quantization level, on 

the other hand, provides poor control accuracy, and if multivariate 

interpolation between tabulated values is planned in an effort to re- 

store control quality, extensive on-line computation will be required. 

In short, the use of a tabulated control law appears feasible only with 

systems for which a reasonably large computer can be provided as an 

on-line controller. 

4 .  Stability 

Since any practical general synthesis method can yield only an 
I1 approximation to the optimal control law, 

Chapter VI is never assured. Thus stabilization of the system in the 

vicinity of the terminal manifold becomes an additional requirement of 

any near-optimal synthesis procedure. Of course, such stabilization 

can generally be determined for the particular application at hand by 

some suitable design technique; the resulting mechanization is then 

incorporated into the controller for use in an operating mode which is 

independent of the near-optimal control law, to be employed solely for 

stabilization in a neighborhood of T. Such a procedure can undoubtedly 

provide the required stability", but only at the price of an expanded 

design effort and an increased complexity in the controller mechaniza- 

tion. 

stability" as defined in 

?I 

On the other hand, it was seen in Chapter VI that the synthesis 
procedure being discussed here can provide stabilization with no altera- 

tion in the form of control from the approximate optimal control law, 

and hence with no modification in the design of the controller. Only 

the coefficients of the approximation I(x)  need be changed. Further- 

more, adjustment of these coefficients allows realization of a spectrum 

of compromise between near-optimal control and the requirements for 

A 

- 

?I stability". 
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not appear explicitly in (7.21.) How does the presence of this con- 

straint modify the computational procedure by which the control law is 

to be obtained? 

The inclusion of such inequality constraints in the optimal control 

problem results in certain modifications to the necessary conditions 

for optimality [Refs. 1, 3, 16, 29, 301. In general, during the interval 

when any optimal trajectory lies on the constraint boundary = 0, the 

associated adjoint vector satisfies a differential equation different 

from (3.2), and in addition, the adjoint vector may be discontinuous 

at the point of first contact of the optimal trajectory with the con- 

straint boundary. 

These modifications necessitate certain changes in the synthesis 

procedure. In particular, the method of generating optimal trajectories 

must include provisioiia for sat isfact ion of the altered necessary con- 

ditions on the constraint boundary. Fortunately, these changes are 

readily implemented, whether the trajectories are obtained by backwards 

integration or by some successive improvement technique (see Ref. 6, 

for example). 

The controller design may also require modification, depending on 
I 1  whether the constraint (7.2) is an actual hard" constraint which is 

physically impossible for the system to violate, or a 

mathematically prescribing operating limits which it is desired that 

the system not exceed. In the latter case, the controller must simulate 

the constraint boundary and insure that it not be violated. 

1 )  soft" constraint 

2. Relay Control 

Since the object of this investigation is the development of a 

general synthesis procedure applicable to a wide range of problems, no 

attention has been paid to the design of specific methods for handling 

special classes of problems. However, one type of problem encountered 

frequently appears particularly susceptible to treatment by a modifica- 

tion of the general synthesis procedure - a simplification, actually - 
and hence will be considered in some detail. 
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The simplest control mechanization requires the synthesis of the 

hypersurface of control discontinuity, usually termed the switching 

surface", on each side of which the optimal control has different con- 

stat values. The determination of the equation of this hypersurface, 

11 

is thus the object of any synthesis method, and the control law to be 

realized by the on-line controller is simply 

u = sgn g(x) . (7.5) 

Exact determination of the switching surface has been accomplished for 

a I"ew preblems i:: ?:,r.rhich the  system is linear and of low order (see, 

for example, Refs. 1, 2, 31). Generally, however, even when the nature 

of the switching surface is known, its accurate realization by an on- 

line controller is unfeasible, and hence approximations of the function 

g(x) 
control problem, such an approximation of the switching surface can be 

conveniently incorporated into the proposed synthesis procedure in the 

following manner. 

must be employed [Refs. 2, 31, 32, 331. For the general relay 

The optimal trajectories are generated just as described in Chapter 

IV, but the only data stored are the values of the n state variables 

at each switch point, where a control discontinuity occurs. Each such 

state point lies on the switching surface, and therefore a representa- 

tion of that surface can be obtained by least-squares fitting of the 

polynomial approximation 

m m  m 

( 7 . 6 )  
A i j  CI V k 
x a = 1 C...C a i j . . .k x1 x2 ' OXa-l xa+l * .xn 

i=O j=l, k=O 

to the set of these data points, where a can take on any value from 
1 to n. In general, the accuracy of the approximation will depend on 

which index is chosen as a, so that for the best approximation, n 
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VIII. EXAMPLES 

This investigation concludes with an account of the application of 

the synthesis procedure described in these pages to some representative 

optimal control problems. The consideration of these examples in some 

detail is intended to fulfill the following three objectives: 

substantiate the correctness and validity of the method as a synthesis 

technique; (2) to support the arguments and evaluations put forth in 

the preceding chapter relative to the practicality and applicability of 

the procedure,which in the absence of corroborating examples would re- 

main largely conjectural; and (3) to illustrate by specific example the 

operation of the method and thereby to elucidate details of its applica- 

tion to actual problems, where heretofore the procedure has been des- 
cribed primarily in general terms. 

(1) to 

To provide the means for treating such problems, a program compris- 

ing an implementation of the synthesis procedure and a simulation of the 

resulting controlled system was written in FORTRAN for the IBM 7090. 

The capabilities of this program include the generation of optimal 

trajectories, either by the method of backwards integration or by a 

gradient optimization procedure [ R e f .  51, the calculation and storage 

of the optimal cost function 

and the approximation of 

the method of least-squares fitting to the stored data points. A 

simplified flow diagram of the program is included as Appendix B. The 

program was used to synthesize near-optimal feedback control laws for 

the three examples to be discussed in this chapter, as well as to simu- 

late the resulting controlled systems for the purpose of evaluation and 

verification of the synthesis procedure. 

I(x) - at points along these trajectories, 

I(x) - by a polynomial of arbitrary degree by 

The three chosen examples display several diverse aspects and 

characteristics representative of many different kinds of optimal con- 

trol problems; included are cases of linear and non-linear systems, 

single and multivariable controls, continuous and bang-bang controls, 

terminal manifolds of varying dimensionality, infinite-time optimal 

solutions, piecewise approximation of I(x), - switching surface 

-63- 



The solution to the general linear problem when the control variable 

u is unconstrained is known (Ref. 191. The optimal control is of the 

form 

1 T  
Y -  - u s = -  - d  h r ,  (8.3) 

involving linear feedback of the state variables, where the matrix P 

is the steady-state solution of the matrix Riccati equation 

(8.4) 
T 1 T G = Q + P F + F P -  -Pdd P 

Y -  

obtained by setting the steady-state 6 to [ O ]  and solving (8.4) for 

the elements of P. The optimal cost function is simply the quadratic 

form 

I(5) = - -  xT Px . (8.5) 

For the particular system of Fig. 3, the matrix P is computed to 

be 

P =  

-1+ J2 -h+E2-1 

1 

1.912 0.414 

(8.6) - - i0.414 1.3521 ' 

The optimal control law for this example with unconstrained control, 

from (8.31, is 

U* = -0.414~~ -1.352~~. ( 8 . 7 )  

It will be noted that in this optimal system, the state variable his- 

tories are exponentially damped sinusoidal functions, and thus the 

origin is not attained in finite time. 
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u* = sat(& h 2 ) ,  (8.8) 

and the differential system (4.6) to be integrated becomes 

x = x2 1 

4 = -x + sat(& x,) 
2 1 

t = l  

h1 = h2 + 2x1 

h2 = -h + 2x2 1 

ht = 0 

where Xt (4.5) is given by 

1 - bZfl I \ 
f 

The terminal values X and h 
1, 2, 

J X1(1O) = 0 

I X2(1O) = 0 

J t(10) = 0 

J X1(10) = x 
1 f 

9 h2(10) = x 
2f 

J Xt(lO) = ’ 

Y Ix 1 < 2  . 
2f 

(8.9) 

(8.10) 

are arbitrary. In this problem the 

system equations (8.9) &re to be integrated backwards in time until 

t = 0, at which instant the states x and x and the associated 

cost will be recorded. Hence, values of X1 h which result in a 

reasonably uniform distribution of points - xf0) throughout X are 

desired. A trial set of 169 trajectories was generated from the grid 
of terminal values: 

+ 0.01, + - 0.02. 
terminal conditions was made: 

+ 0.008, + 0.013, + 0.02. For each combination of values for 
h , the system (8.9) was integrated backwards in time until t = 0. 

(In practice, neither the 3rd nor 6th equation of (8.9) actually required 

integration, since the variable t is always available as the independent 

1 2 

2f 

, X = 0, - + 0.0001, + - 0.0005, - + 0.001, - + 0.005, 
xlf 2f On the basis of these results, a final selection of 

3 

, X = 0, + 0.0015, + 0.003, + - 0.005, - - 
and xlf 2f 

xlf - - - 

2f 
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After generating the  set of optimal t r a j e c t o r i e s ,  f i v e  approxima- 

t i o n s  of the  optimal cos t  function for t h i s  modified problem were 

obtained as polynomials of the form 

m m  

(8.11) 

by making reduced least-squares f i t s  of degree 

s tored  da ta  points.  

mations over t he  set of observations were 

m = 2, ..., 6 t o  the 169 

The root-mean-square e r r o r s  of these f i v e  approxi- 

E = 0.4697 2 

E = 0.4711 3 

e4 = 0.1797 

E = 0.2184 5 

E = 0.2536, 6 

where the average optimal cos t  over t he  da t a  poin ts  had an approximate 

value of 8.4. The s l i g h t  discrepancy i n  the value of e3 i s  a t t r i bu -  

t a b l e  t o  numerical eccen t r i c i t i e s  occasioned by the  process of f i t t i n g  

a polynomial of odd degree to a set of da t a  poin ts  which are completely 

symmetric about t he  o r ig in ,  w h i l e  the values of E and E show the 

e f f e c t  of increasing numerical inaccuracy i n  t h e  so lu t ion  of t he  least- 

squares system (4.9) as the condition of s ingu la r i ty  is  approached by 

the  matrix S with increasing m. On the bas i s  of these r e s u l t s ,  t he  

approximation of degree four  was se lec ted  as the  bes t  representat ion of 

I(z). 

5 6 

The coe f f i c i en t s  of t h i s  approximation are l isted i n  Table 1. 
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4 4  
A i-1 j 

2 '  I, =I C i a  ij x 1 X 
i=l j=O 1 X 

i+j - < 4 

4 4  

(8.13) 

j -1 
2 X 

As indicated in Chapter VI, application of the control law (8.12) 
It does not insure 

asymptotic stability, since T is the origin, an equilibrium point for 

the system. Stability can be guaranteed, however, by substituting for 

the fourth-degree approximation (8.11) a quadratic form 

stability", which for this example is equivalent to 

(8.14) 

R being a positive definite square matrix, in some neighborhood of the 

origin. Though any qualified R will provide stabilization, the ana- 

lytic results stated at the beginning of this example for the case with 

unconstrained control show that in the vicinity of the origin stability 

and optimality can be combined by selecting R = P, where P is given 

by (8.6). Then the approximation (8.14) is exact and the resulting con- 

trol (8.12) is truly optimal, being equivalent to the control given by 

(8.7). 

(8.14) is employed throughout the entire neighborhood of the origin in 

which the optimal constrained control never subsequently saturates, but 

application of such a policy requires previous knowledge of the limits 

of this region. In the absence of this information a more arbitrary 

determination of the approximation-switching boundary must be made. 

Of course, best results will be obtained when the representation 

If the analytic results for the unconstrained control problem were 

not known, a logical method for selecting the matrix R would be to 

eliminate all but the quadratic terms of the complete polynomial approxi- 

mation (8.111, 2s suggested in Chapter VI. When this is done for the 
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TABU 2. RESULTS OF SIMULATION OF THE CONTROWD SYSTEM OF EXAMPLE A. 

TRAJECTURY INITIAL CONDITIONS 

x1 ( 0 )  x2(o) 

1 -2.358 0.802 

2 -2.305 1.486 

3 -1.846 2.013 

COST COST PENALTY: 

Optimal Using Percentage 
Synthesized Above Optimal 
Control cost 

10.658 10.662 0.04 

12.368 12.371 0.02 

11.959 11.965 0.05 

4 

5 

-1.293 2.445 12.815 12.834 0.15 

-0.665 2.867 16.118 16.142 0.15 

B. EXAMPLE B 

Consider the single-axis model of a space vehicle shown in Fig. 4. 

Stabilization of the inertial attitude of this vehicle in the presence 

of both impulsive perturbations and constant disturbing torque is re- 

quired. The control actuating devices include an inertia wheel driven 

by a d-c motor for momentum storage and a pair of gas jets for momentum 

dumping. 

respect to the vehicle's principal axis, the equation of attitude motion 

can be written: 

Assuming these actuators to be located symmetrically with 

6 

7 

8 

9 

10 

11 

I"e-.b=T + T  J D  

~ 

0.457 3.075 20.755 20.758 0.01 

0.704 2.841 18.293 J.U. A33 0.01 

1.172 2.387 15.309 15.313 0.03 

1.764 1.623 12.798 12.803 0.04 

2.073 1.026 11.839 11.843 0.03 

2.301 0.110 10.715 10.719 0.04 

- -  m-7 

? 
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The cost function to be minimized in the control process is a 

weighted sum of the fuel expended by the gas jets and the integral 

squared attitude error: 

T 
R =  121 + y e 2 ,  

TJ m 
(8.18) 

y being an arbitrary positive weighting factor. 

The following state variable and control variable definitions are 

made : 

- R  
x 3 =  n m 
u Z Ke , (lull -<ul Kern) 

m 1 

- - TJ I , (lu21 5 u 2  - = -1. 'Jm 
I u - -  

m 

Then the system equations (8.16) and (8.17) can be rewritten in the 

form (2.1): 

1 = x 2  

px3+ pu + u + v 1 2 
x = -u 

lm 2 

where v Z TD/I and f3 S/I. The loss function becomes 

-7 5- 

(8.19) 

(8.20) 



The l i n e a r  appearance of u i n  the Hamiltonian suggests the  p o s s i b i l i t y  

of s ingular  optimal cont ro l ,  which must be invest igated [Refs. 17,  181. 

Examination of the problem shows tha t  the  only s ingular  optimal tra- 

jec tory  which e x i s t s  coincides with the x -axis between the l i m i t s  

1 

3 

Vehicle and Motor Parameters 

and x - 1 + v/pul . Thus, when x1 = x2 = 0 and 
m 3 -  x = -1 + v/pul 

m 3 

Derived System Parameters 

x l ies  i n  t h i s  region, the  optimal t r a j ec to ry  is  s ingular ,  l y ing  

along the  x -axis. The optimal cont ro l  i n  t h i s  region is 
3 

3 

= 0.1 f t - l b  TJ m 
7 = 40. sec 

Q = 400. rad/sec m 

- v/p, u2 = 0. Since the  object  of the  cont ro l  ac t ion  i n  u1 = ulmx3 

-2 

-3 -2 

-4 -2 

u = nm/, = 10. sec 

u = TJ /I = 0.667 x 10 sec 

v = TD/I = 0.5 x 10 sec 

l m  

2m m 

t h i s  example is  t o  a t t a i n  the  x -axis from elsewhere i n  X, t h i s  singu- 

lar  so lu t ion  is  of no fu r the r  concern. 
3 

TABLE 3. SYSTEM PARAMETER VALUES FOR EXAMPLE B. 

2 I = 150. slug-ft  

J = 0.002 slug-ft2 

-1 
a! = 1 / ~  = 0.025 sec 

B = J/I = 1.333 x lom5 

Application of t h e  maximum pr inc ip le  y i e lds  the  optimal cont ro l  l a w :  

* a! u = u sgn (PX, + 7 x3 1 
l m  l m  

Thus the nature of the optimal cont ro l  vol tage t o  the  d-c motor is  

bang-bang, while the optimal gas j e t  cont ro l  i s  bang-off-bang. 

(8.22) 

-77- 



both must be employed i n  order  that  the  complete family of extrema1 

so lu t ions  be generated. I f  v lies outs ide the  range indicated,  the  

s y s t e m  carfnot be control led.  

Approximately 50 exploratory t r a j e c t o r i e s  were generated using 

var ious combinations of values for the  two a rb i t r a ry  parameters x 
3f . On the bas is  of those r e s u l t s  a g r id  of 41 p a i r s  of 

and x l f  
values  f o r  these terminal conditions w a s  se lec ted  t o  y i e ld  a reasonably 

uniform d i s t r ibu t ion  of t r a j e c t o r i e s  throughout X. These se l ec t ions  

a r e  displayed i n  Table 4. For each chosen p a i r  of parameters, equations 

(8.23) w e r e  in tegra ted  backwards from the  x -axis t o  the  boundary of 

X, and the  l o s s  function (8.20) w a s  simultaneously integrated to obta in  

t h e  optimal cos t .  

3 

X 

3f 

-0.75 

-0.75 

-0.75 

-0.75 

-0.75 

-0.75 

-0.75 

-0.50 

-0.50 

-0.50 

-0.50 

-0.50 

-0.50 

-0.50 

0 

0 . 1 0 ~ 1 0 - ~  

0. ~ o x ~ o - ~  
0. 20x10-2 

0 . 6 O ~ l O - ~  

0. 15x10-1 

0 . 5 O ~ 1 0 - ~  

0 

0 . 1 0 ~ 1 0 - ~  

0. ~ O X I O - ~  

0. 2ox10-2 

0 . 6 O ~ l O - ~  

0. 15x10-1 

0 . 5 O ~ 1 0 - ~  

X 

3f 

-0.25 

-0.25 

-0.25 

-0.25 

-0.25 

-0.25 

-0.25 

0 

0 

0 

0 

0 

0 

0 

0 

0 . 2 0 ~ 1 0 - ~  

0. 2ox10-2 

0. loxlo-l 

0. 20x10-1 

0 .50x10a2 

0 . 5 O ~ 1 0 - ~  

0 

0. 2ox10-2 

0 . 5 O ~ l O - ~  

0 . 7 O ~ l O - ~  

0. loxlo-l 
0 . 3 O ~ 1 0 - ~  

0 . 7 O ~ l O - ~  

1 In t h i s  problem the  optimal cont ro l  u 

X 

3f 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.50 

0.50 

0.50 

0.50 

0.50 

0.50 

0 

0. 2ox10-2 

0 . 5 O ~ l O - ~  

0 . 7 O ~ l O - ~  

0. 10X1o-l 

0. 30x10-1 

0. 70x10-1 

0 

0 . 1 0 ~ 1 0 ~ ~  

0 . 5 0 ~ 1 0 - ~  

0 . 7 O ~ l O - ~  

0. loxlo-l 

0. 20x10-1 

can take on two possible  

values,  f u , while u can assume three ,  2 u or 0. Hence s i x  
l m  2 2m 
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4 4 4  

(8.25) 

i+j+k - < 4 

are l i s t e d  i n  Table 5 f o r  each of these regions.  

The computer t i m e  required f o r  the  in tegra t ion  of the  50 explora- 

t o ry  t r a j e c t o r i e s  w a s  about f ive  minutes, while the synthes is  procedure 

proper,  comprising the  generation of 41 t r a j e c t o r i e s  and the f i t t i n g  of 

a fourth-degree polynomial to t h e  s tored  da ta  i n  each of four  separate  

con t ro l  regions,  required 12.8 min., so t h a t  the 7090 w a s  occupied w i t h  

the  so lu t ion  of t h i s  example l e s s  than 20 minutes a l toge ther .  

The control l a w  f o r  t h i s  example is  obtained by the  method des- 

c r ibed  i n  Chapter V. The motor cont ro l  is given by 

A A 

u = -u sgn(ul B I ,x + a I ,x 
l m  m 2 3 1 

(8.26) 

Define 

A A A A 

5 3 -1, x + (u, i3 I ,x  + cu I ,x  1 (x3 - sgn u 1-1, v. 
2 1 x  

1 m 2 3 x 2  

The gas j e t  cont ro l  is  then expressed as 

To make use of t he  piecewise approximations of 

must also possess the capabi l i ty  of t racking t h e  s ta te  point  from one 

con t ro l  region t o  another i n  order t o  insure  t h a t  the  approximation 

being employed a t  each in s t an t  i s  the co r rec t  one. 

I ( x ) ,  the con t ro l l e r  - 
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TABLE 5. COEFFICIENTS aijk OF THE FOURTH-DEGREE PIECEWISE 
(Con’d) WPROXIMATIONS TO THE OPTIMAL COST FUNCTION FOR 

EXAMPLE B. 

INDICES REGION 3 REGION 4 

i j k (ul= u , u2= u2 (ul= -u 
lm m m 

0 0 0  
0 0 1  
0 0 2  
0 0 3  
0 0 4  
0 1 0  
0 1 1  
0 1 2  
0 1 3  
0 2 0  
0 2 1  
0 2 2  
0 3 0  
0 3 1  
0 4 0  
1 0 0  
1 0 1  
1 0 2  
1 0 3  
1 1 0  
1 1 1  
1 1 2  
1 2 0  
1 2 1  
1 3 0  
2 0 0  
2 0 1  
2 0 2  
2 1 0  
2 1 1  
2 2 0  
3 0 0  
3 0 1  
3 1 0  
4 0 0  
RMS error 

-0.30537763 01 
-0.31338153 01 
0.44703053 01 
0.15131413 01 
-0.88135563 00 
-0.96242123 03 
-0.23877433 04 
0.85962173 03 
0.10460893 03 
n -C.’IVQAAF nc 

-0.38095053 06 
0,54347293 05 
0.17305063 08 
-0,22560763 08 
0.14256883 10 
-0.97696283 02 
0.10673423 02 
0.54827173 01 
0.37213823 01 
-0.12039753 05 
-0.12112873 05 
0.33675103 03 
-0.30160213 07 
-0.20615373 07 
0.11426443 08 
0.82478793 03 
-0.29144643 03 
-0.1000811E 03 
-0.23122553 06 
-0.11231583 06 
-0.10102413 08 
-0.32439073 04 
-0.31707733 04 
-0.56518603 06 
-0.10707443 05 

V.J.VJ.IUWVL. vv 

0.258 

-0.17899623 01 
-0.66369293 01 
0.21449503-00 
0.17485073 01 
0.33343433-00 
0.20742963 04 
0.35720283 03 
-0.96565033 03 
-0.16328493 03 
0.16649893 05 
0.14569343 06 
0.93337893 05 
-0.18588513 08 
-0.18531903 08 
0.23159363 10 
0.31518153 02 
0.65853013 02 
-0.69993903 01 
-0.28696263 01 
0.20568173 04 
-0.95267223 04 
0.4040602E 04 
0.95701773 06 
-0.66832093 06 
0.19465253 09 
0.15056903 04 
-0.34234223 03 
0.11290853 03 
0.49333943 05 
0.64064293 04 
0.76528733 07 
-0.12076353 04 
0.42270843 03 
0.30842693 06 
0.67062103 04 
0.615 
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i 

Using this control, the equations of motion were integrated for- 

wards from the same nine initial conditions used before, and the re- 

sults of these simulations are also included in Table 6 .  The control 

accuracy achieved by the two control laws is seen to be of comparable 

quality, but of course the implementation of (8.31) in an on-line con- 

troller is far simpler than the mechanization of (8.26) and (8.27) 

together with the associated tracking and switching logic. The compu- 

tation time required by the second synthesis method is also less than 

for the first. 

c .  EXAMPLEC 

Figure 7 depicts a planar space rendezvous problem in which a 

pursuing vehicle P is to be brought to a stationary position along- 

side ii target vehicle T, Control of P is effected by a throttleable, 

steerable rocket motor. The equations of motion for this system are 

.. 
r - ri2 = a cos e 

(8.32) .. .. 
ry + 2ry = a sin 6 , 

where r is the range to P from T, y is the angular velocity of the 

line-of-sight to P from T, a is the acceleration of P, assumed 

controllable between the limits zero and a , and 8 is the angle of 

the 

shown in Fig. 7 .  

m 
axis of the rocket motor relative to the line-of-sight TP, as 

a f 



A set of nominal initial conditions for the rendezvous maneuver is 

assumed: 

x(t)=r 1 0  0 

x(t)=r 2 0  0 

x (t ) = O .  3 0  

The control system is to be designed to provide near-optimal control 

along any trajectory with initial conditions in a given neighborhood 

of the nominal set. In particular, at the nominal initial range of 

r off-nominal conditions of range rate and line-of-sight rate in the 

regions 
0’ 

are to be accommodated. This specification implicitly defines the 

region X for this example. 

The numerical values chosen for the parameters of this problem 

comprise Table 8. The values of A 2  and A correspond to initial 

errors in the relative velocity of P of up to 50 ft/sec in magnitude 
and 20 in direction at the nominal initial range. 0 

TABU 8. SYSTW PARAMETER VALUES FOR ExAlvIpLE C 

a = 0.5 r = 100,200. ft 

K1 = 0.0069444 r = -200. ft/sec 

K2 = 10,000 

rf = 200. ft 

m * o  

0 

% = 46.9845 ft/sec 

% = 17.067~10-~ rad/sec 
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and where the  values of h l f  and Xgf are a r b i t r a r y .  

110 exploratory t r a j e c t o r i e s  were generated by t ry ing  var ious 

. Based on 
l l f  and x3f 

combinations of values f o r  the  parameters 

these  r e s u l t s ,  a set of 81 pa i rs  was se lec ted  t o  y i e ld  a reasonably 

uniform d i s t r i b u t i o n  of optimal t r a j e c t o r i e s .  These se l ec t ions  are 

l i s t e d  i n  Table 9. For each pa i r ,  the  corresponding optimal t r a j ec to ry  

w a s  generated by in t eg ra t ing  (8.37) backwards from the  terminal mani- 

f o l d  t o  the plane 

and associated cost were tabulated a t  cos t  increments of ten.  I n  a l l ,  

572 da ta  poin ts  w e r e  obtained. 

xl = 125,000 f t .  Along each t r a j ec to ry  the s t a t e  

To avoid numerical problems of overflow and underflow i n  the  

approximating procedure because of the  range of values assumed by the  

s t a t e  var iab les  of t h i s  example, i t  w a s  decided t o  sca l e  these var iab les  

for t he  least-squares f i t t i n g  process (Appendix a). Accordingly, the 

var iab les  

themselves, where the  sca l e  fac tors  chosen w e r e  k = 10 , k2 = 1, 

yi = kixi, i = 1,2 ,3  were stored ins tead  of the states 
-4 

1 
k3 = lo4. 

Three polynomial approximations of I ( y )  - w e r e  Obtained by making 

reduced f i t s  of degrees two, t h r e e  and four to  the  572 da ta  points .  

The root-mean-square errors of these  approximations over the da t a  were 

i 

E = 3.4685 2 

E = 0.4453 3 

E = 0,3543, 4 

where the  average value of I w a s  approximately 46.2. The c o e f f i c i e n t s  

of the fourth-degree approximation, the one se lec ted  f o r  use i n  the  

cont ro l led  sys t em simulation, are l i s t e d  i n  Table 10. 

The conputer t i m e  required i n  generating the  110 exploratory tra- 

j e c t o r i e s  w a s  7.8 minutes, w h i l e  t he  synthes is  procedure proper re- 

quired 13.0 minutes. 
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TABLE 10. COEFFICIENTS a i . k  OF THE FOURTH-DEGREE APPROXIMATION 
TO OPTIMAL 8OST FUNCTION FOR EXAMPLE C. 

INDICES 

i j k  

0 0 0  
0 0 1  
0 0 2  
0 0 3  
0 0 4  
0 1 0  
0 1 1  
0 1 2  
0 1 3  
6 2 0  
0 2 1  
0 2 2  
0 3 0  
0 3 1  
0 4 0  
1 0 0  
1 0 1  
1 0 2  
1 0 3  
1 1 0  
1 1 1  
1 1 2  
1 2 0  
1 2 1  
1 3 0  
2 0 0  
2 0 1  
2 0 2  
2 1 0  
2 1 1  
2 2 0  
3 0 0  
3 0 1  
3 1 0  
4 0 0  

COEFFICIENT 

0.25552483 01 
-0.23264503-02 
0.18459933-01 
-0.41553443-05 
-0.20489233-03 
0.20963363-00 
-0.14856333-03 
0.53727803-04 
-0.82363433-06 
0.1155180E-01 
-0.39738673-05 
0.2402931E-05 
0.44857673-04 
-0.56313633-07 
0.10021813-06 
0.68061993 01 
-0.18816833-02 
0.13215893-01 
-0.17050663-04 
0.40501643-00 
-0.10200023-03 
-0.32723293-04 
0.97657933-03 
-0.28616533-05 
0.32489783-05 
0.33489273 01 
-0.57674503-03 
0.10001663-02 
-0.18733373-01 
-0.49829133-04 
0.3480404E-04 
-0.37150403-00 
-0.29835913-03 
0.98393723-03 
0.14712583-01 
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compute a new approximation of I (x)  f o r  use i n  t h e  v i c i n i t y  of T,  

a simple a l t e r n a t e  cont ro l  scheme w a s  sought which would permit simu- 

l a t i o n  of t he  t e rmina l  phase of each t r a j ec to ry .  

- 

Examination of the  optimal t r a j e c t o r i e s  generated i n  the  synthes is  

procedure indicated t h a t  i n  the  f i n a l  port ion of each trajectory the  

value of the  optimal cont ro l  

to  the  terminal value u (t 1/12. Furthermore, the  angular ve loc i ty  1 f  
x is  reduced e s s e n t i a l l y  to zero ear ly  along each t r a j e c t o r y ,  so t h a t  

t he  terminal phase is c lose ly  described by the simple second-order 

l i n e a r  sys t em r e su l t i ng  from (8.34) by s e t t i n g  x3 t o  zero: 

u1 decreases almost l i n e a r l y  w i t h  t i m e  

3 

1 = x 2  
(8.40) 

On the  b a s i s  of these observations,  then, the  following simple terminal 

con t ro l  scheme w a s  provided i n  the  simulation. L e t  t x and x 
0 ’  lo 2O 

denote the  values of t i m e  and the states xl, x2 a t  the point  a t  which 

the  terminal cont ro l  scheme is i n i t i a t e d .  The cont ro l  u is  then 

obtained i n  the form 
1 

I - -  
1 2  

u p  = u1 - (’0 t - t  ) ( t  - t o ) ,  
0 f o  

(8.41) 

where the  parameters u and tf are computed as funct ions of t 0 ’  
l 0  

X and x2 to  insure  that  the t r a j ec to ry  described by (8.40) w i t h  
l 0  0 

i n i t i a l  condi t ions x (t ) = x , x2(to) = x a r r i v e s  a t  t he  des i red  
l0  2O 

1 0  

terminal state: x l ( t f )  = rf, x (t ) = 0. The con t ro l  u2 is simply 

(8.42) 3’ u = -1200 x 2 

where the value of the coef f ic ien t  w a s  chosen i n  correspondence w i t h  

the  na ture  of the  known optimal so lu t ions .  
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B. SUGGESTIONS FOR FUTURE RESEARCH 

In the literature comparatively little attention has been devoted 

to the development of computational procedures for the practical solu- 

tion of the general optimal control problem by methods other than 

dynamic programming. However, the diversity of control problems 

occurring in engineering technology suggests that no one synthesis 

procedure can be well suited for all applications. 

therefore, that alternative general synthesis techniques be developed 

so that a variety of tools is available for the treatment of these 

problems. 

and it suggests others. For example, approximation of the adjoint 

vector X as a function of 5, or the control law c*(x) itself 

could provide the basis for near-optimal control. Approximation by 

functions othsr than plynomials may also be advantageous. Any pro- 

posed synthesis procedure should be tested and evaluated with respect 

to computational feasibility and ease of implementation. 

It is important, 

The method described in these pages represents one approach, 

- - 

In Chapter I11 certain assumptions were made about the nature of 

the optimal cost function in order to provide a theoretical basis for 

the development of the synthesis procedure, and it was noted that direct 

verification of the validity of these assumptions is generally not 

possible. An interesting question worthy of exploration is the follow- 

ing: Under what more fundamental (and presumably more readily verifi- 

able) or less restrictive assumptions on the nature of the problem than 

those made here can the relation (3.5) be established? Although some 

answers to this question are available [Ref. 161, certain assumptions 

must still be made which cannot be easily validated. 
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APPENDIX B .  F L O W  DIAGRAM OF THE APPFtOXIMATION PROGRAM 

Integrate equations of motion (2.1) and adjoint 
equations (3.2) backwards from T,  using optimal 
control (3.8). Compute cost integral (2.4) and 
store I(x) - at regular increments of cost. 

__ 

Figure 8 is a general flow diagram of the program to approximate 

described in Chapter I V  and used in the control law synthesis I(x) 

for the examples of Chapter V I I I .  
- 

-5- 

Yes 

Compute coefficients of least- 
squares equations (4.9) for 
approximation to I(x) of 
degree m. Solve least-squares 
equations. 

FIG. 8.  F W W  DIAGRAM OF PROGRAM FOR APPROXIMATING I(x) - . 
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Output coefficients of approxi- 
mating polynomial. 

I 

m=m+l 
Compute rms error of 
approximation, (4.14). 
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